The Power of Free Association

The ability of the human mind to associate information is a critical feature of its creative abilities. Why? While many anthropologist believe human brain size was driven by tool building the fact is that socialization proves to be a greater stimulus for creativity. If we look at the rate of innovation before agriculture and city states, tools did not change much in tens of thousands of years! So tool making is not the driver for bigger brains.

Why nature is naturally selecting for free association in humans is due to the social demands of the species, which is something Dr. Richard Leaky has hinted at. Free association of information allows us to invent interesting topics of conversation and in fact, would reinforce the ability to sensationalize! The more interesting you can make a topic or invent a myth or personal experience the more attention one can get from the troop or tribe. Such attention can then lead to greater influence in a group that can realize such individuals to solicit more mates and collaboration from peers. It is not until recently that the social creative impetus of humans has been applied to sophisticated tool making.

No one has looked at the ability of the human brain to freely associate information as a product of information processing and data structuring. When trying to engineer the equivalent in current software development paradigm it is impossible or is it?

Below is a software tool that can analyze sentences, paragraphs, pages, and even books and relates them to topics of information through an ontological framework. It effectively allows the software to have an impression!

Figure depicts first and second levels of Roget’s classification scheme.
Figure depicts levels two and three of Roget’s Classification scheme.

The ontological framework is Roget’s Thesaurus and it has been formatted into a form that allows for highly paralleled O1 searches. It allows for a machine to gain an impression by being able to relate to the information as if it were Roget himself, well almost. Roget did not document some critical personal views of his in the thesaurus. But for the most part the software relates to information from the perspective of a 19th century mindset!

Depicts Roget's ontological framework in his thesaurus.
The center block represents a core high level class that has satellites who have satellites, who have satellites, who have satellites. The figure above is displaying Roget’s “Words Expressing Abstract Relations” class.
This is another Roget Class: “Words Relating To The Sentient And Moral Powers” class.

So how does this relate to or explain the human brain’s power of free association? The software operates on a data structure that is self similar. So we can do something very interesting and that is do a partial feature match. So by doing this we can solicit data that otherwise, because of its subject matter, would not be addressed. So what good is this?

Well by indexing partially related information the machine can move a conversation or problem solving to other disciplines that otherwise would not be addressed. We can see the efficacy of this kind of data querying or retrieval in human socialization. Conversations can roam in ways that seem chaotic as say two people start talking about “Star Wars” but the conversation later on is about digging ditches in the backyard. By doing something like the software described above topics can be landed on that do not completely or directly relate to the current topic of conversation. So we can get similar types of conversations with machines as we do with humans, where what we start with is not how the conversation ends.

This type of partial feature matching can also explain creativity as in that Zen like experience where one see’s a water drop hanging from a flower pedal that then leads to the theory of relativity! This concept, again, hinges on the principle of partial feature matching. So something in the water drop or flower pedal, along with chemical brain states solicited or queried information that partially matched that moment in time and space that then revealed concepts that could be evaluated and formalized into a new and novel idea.

So the tools and technology to make machines creative and even social are in place but their current application are not used for a social machine. Remember that to be social the machine or human must be creative. As Dr. Richard Leaky stated: “Humans have the highest social demands of any other animal.” For A.I. to be relatable to human beings it must meet the social expectations of humanity.

What are Emotions

Emotions are an enigma and no one has really set in stone what emotions are. There are certain chemical signatures such as oxytocin and noradrenaline, endorphin, dopamine, vasopressin and serotonin that are associated with emotions but there are fundamental issues with emotions that haven’t been answered. For one an emotion doesn’t come about until after a stimuli is processed and interpreted, yet with animals those very same chemical signatures exist as well, so it would seem that since humanity evolved from ape like animals that process exist apes as well as other mammals. Emotions are a matter of interpretation and other animals probably do not interpret such neural signally the way a human does. But this gets much more complicated since cultural influence and personal experience can affect the interpretation of the neural signaling as well. So emotional experiences are not the same from person to person, there are differences, yet we all believe or argue that emotional interpretation are universal to all humanity. To understand emotions we need to monitor neural activity on a connection by connection basis.

One method of doing so is using optogenetics. This process is very exotic and surprisingly effective. Optogenetics involves modifying the genetics of an animal where its neurology can not only output the chemical transmitters to function but also will emit light as a neuron fires! With that said one can build interfaces of fiber optic probes into an animals brain and listen to the neural activity. Not only that but the neurons can be affected by light emitted by the probes as well. This will lead to a much more detailed understanding of the neural code of brains and an understanding of emotions.

People drew maps of body locations where they feel basic emotions (top row) and more complex ones (bottom row). Hot colors show regions that people say are stimulated during the emotion. Cool colors indicate deactivated areas.

However, there has been much work in the concept of emotions by psychologists where there are three tiers of emotions. There has also been work done on how humans feel emotions and one such study demonstrated an almost universal body map of how we feel emotions.  With that said can we model emotions?

Plutchik’s wheel of emotions gives us a concept of tiered emotions as emotions have core origins starting with 8 primary emotions that then extend to secondary and tertiary emotions. However, there have been others who argue that Plutchik’s wheel doesn’t capture all human emotions. Parrott, Shaver et al is the model that I decided to use.

Example of an Emotion Wheel that starts with 6 primary emotions

Using the OODM Descriptor model we can actually model emotions! Because of the inheritance ability of OODM the relationships of the tiers of emotions and how they are derived can be described.

The image above shows how emotions can be described with Descriptors. Note that only MicroDescriptors are used and also notice that inheritance is used.

The entire Emotions Wheel is structured into classes that all inherit from a “Base Class Emotion”. The base class emotion contains the common descriptors used for all emotions. MicroDescriptors facial expression, secondary, none (will explain this later), and bodymap ProtoVector SubTypes have attributes whose data are actually vectors.

The base Class Emotion contains the basic three MicroDescriptors for all emotions, as shown in the image above.

The MicroDescriptor “none”, due note that all MicroDescriptors are listed as their SubClass Types in this viewer, is actually the arousal Group ProtoVector as shown in the image above. This group along with emotions where created to model emotions and the arousal state can be set to any of the listed subclass types. Each subclass type has vectors associated. So the state of “none” means no vector state has been set yet.

Once all emotions have been described we can build charts of the data as shown in the image above. The list of all emotions is on the left-hand side. Select an emotion and the charts will describe the hierarchy of the emotion any higher tiers represented by the emotion and if you select one of the higher tiers on the right-hand side below are charts that will describe the chemical signature vectors, Arousal, and Valence vectors and the facial muscles activations associated with the emotion as well the body map of where humans feel the emotion. You’ll also notice sliders on the lower left-hand side of the panel where the vectors can be adjusted.

OODM proved to be adequate in modeling or describing emotions so they are more than a word or state but a set of concepts that give the emotion meaning. The need to interpret stimuli to an emotion would be handled by a separate algorithm which could very well be a neural network!