Why AI should have the ability to dream

What are dreams? According to Wikipedia:

The content and purpose of dreams are not fully understood, although they have been a topic of scientific, philosophical and religious interest throughout recorded history. “

And:


Dreams mainly occur in the rapid-eye movement (REM) stage of sleep—when brain activity is high and resembles that of being awake. REM sleep is revealed by continuous movements of the eyes during sleep. At times, dreams may occur during other stages of sleep. However, these dreams tend to be much less vivid or memorable.

Brain MRI scans of mice during rem sleep reveal some interesting aspects about what dreaming really is. Where scientist see 3D grid maps of past spacial experiences of the mice. Now you may ask how do they know that it was an experience the mouse lived? Well the 3D spacial grids actually show neurons firing in patterns that resemble the mazes the mice had walk through earlier! So it would appear, at least for mice, dreaming is actually reliving past experiences. So what is the benefit of reliving past experiences?

If you recall the description of the snake and mouse in the “Predicting vs Reacting” post where the snake shifted its mode of attack instantly by reacting to the change in the mouses behavior form other mice. Mammals have more sophisticated brains than snakes and it would appear that even mice can emulate a virtual reality of sorts to learn new adaptations or reactions to their environment. By re-living events some animals can learn new novel adaptations to their environment.

Human brains also have those kinds of 3D spacial maps like the mice. So our dreaming brings about a virtual reality that can experiment with ideas and past experiences. This is where human dreaming is different to animals like mice. Humans use abstract ideas where such notions while never experienced can prompt a virtual experience in our imaginations or dreams. This explains why not all dreams in human beings are re-lived experiences but actual novel concoctions of worlds or scenarios not even possible in the real world! So what is the advantage of dreaming in humans?

One could argue that it is very advantageous to have the ability to work out scenarios not experienced. It allows for ideas to be explored in a way that feels real and therefore solicits the kind of reaction or prompting of resources of the brain to cope with the imagined just as if it were real. In other words dreams allow us to gain experiences with issues we haven’t literally lived but we could apply to our real lives!

So too could an A.I. benefit from an means to reenact past and imagined experiences and learn in virtual environments just as they can learn from real experiences.

Mimicking Arousal

What is arousal? According to the APA dictionary of psychology:

1. a state of physiological activation or cortical responsiveness, associated with sensory stimulation and activation of fibers from the reticular activating system.

2. a state of excitement or energy expenditure linked to an emotion. Usually, arousal is closely related to a person’s appraisal of the significance of an event or to the physical intensity of a stimulus. Arousal can either facilitate or debilitate performance. See also catastrophe theory—arouse vb.

The key component for arousal is the reticular activating system (RAS). This is responsible for alertness and focus in mammals. Here is another feature of brain activity that is responsible for real-time adaptations in the environment. But for a machine that can be relatable to people RAS is also critical. Imagine how much more empathy or anthropomorphic a machine becomes when it conveys something that all humans experience, feeling sleepy, tired and/or feeling very active with energy!

To Mimic RAS involves signalling or processing that captures things such as battery levels, time of day, feelings of exhaustion. These signals have to be integrated into the information processing of the machine in such a way that it affects its choices and interpretations of information both externally and its internal states.

The Power of Free Association

The ability of the human mind to associate information is a critical feature of its creative abilities. Why? While many anthropologist believe human brain size was driven by tool building the fact is that socialization proves to be a greater stimulus for creativity. If we look at the rate of innovation before agriculture and city states, tools did not change much in tens of thousands of years! So tool making is not the driver for bigger brains.

Why nature is naturally selecting for free association in humans is due to the social demands of the species, which is something Dr. Richard Leaky has hinted at. Free association of information allows us to invent interesting topics of conversation and in fact, would reinforce the ability to sensationalize! The more interesting you can make a topic or invent a myth or personal experience the more attention one can get from the troop or tribe. Such attention can then lead to greater influence in a group that can realize such individuals to solicit more mates and collaboration from peers. It is not until recently that the social creative impetus of humans has been applied to sophisticated tool making.

No one has looked at the ability of the human brain to freely associate information as a product of information processing and data structuring. When trying to engineer the equivalent in current software development paradigm it is impossible or is it?

Below is a software tool that can analyze sentences, paragraphs, pages, and even books and relates them to topics of information through an ontological framework. It effectively allows the software to have an impression!

Figure depicts first and second levels of Roget’s classification scheme.
Figure depicts levels two and three of Roget’s Classification scheme.

The ontological framework is Roget’s Thesaurus and it has been formatted into a form that allows for highly paralleled O1 searches. It allows for a machine to gain an impression by being able to relate to the information as if it were Roget himself, well almost. Roget did not document some critical personal views of his in the thesaurus. But for the most part the software relates to information from the perspective of a 19th century mindset!

Depicts Roget's ontological framework in his thesaurus.
The center block represents a core high level class that has satellites who have satellites, who have satellites, who have satellites. The figure above is displaying Roget’s “Words Expressing Abstract Relations” class.
This is another Roget Class: “Words Relating To The Sentient And Moral Powers” class.

So how does this relate to or explain the human brain’s power of free association? The software operates on a data structure that is self similar. So we can do something very interesting and that is do a partial feature match. So by doing this we can solicit data that otherwise, because of its subject matter, would not be addressed. So what good is this?

Well by indexing partially related information the machine can move a conversation or problem solving to other disciplines that otherwise would not be addressed. We can see the efficacy of this kind of data querying or retrieval in human socialization. Conversations can roam in ways that seem chaotic as say two people start talking about “Star Wars” but the conversation later on is about digging ditches in the backyard. By doing something like the software described above topics can be landed on that do not completely or directly relate to the current topic of conversation. So we can get similar types of conversations with machines as we do with humans, where what we start with is not how the conversation ends.

This type of partial feature matching can also explain creativity as in that Zen like experience where one see’s a water drop hanging from a flower pedal that then leads to the theory of relativity! This concept, again, hinges on the principle of partial feature matching. So something in the water drop or flower pedal, along with chemical brain states solicited or queried information that partially matched that moment in time and space that then revealed concepts that could be evaluated and formalized into a new and novel idea.

So the tools and technology to make machines creative and even social are in place but their current application are not used for a social machine. Remember that to be social the machine or human must be creative. As Dr. Richard Leaky stated: “Humans have the highest social demands of any other animal.” For A.I. to be relatable to human beings it must meet the social expectations of humanity.

What are Emotions

Emotions are an enigma and no one has really set in stone what emotions are. There are certain chemical signatures such as oxytocin and noradrenaline, endorphin, dopamine, vasopressin and serotonin that are associated with emotions but there are fundamental issues with emotions that haven’t been answered. For one an emotion doesn’t come about until after a stimuli is processed and interpreted, yet with animals those very same chemical signatures exist as well, so it would seem that since humanity evolved from ape like animals that process exist apes as well as other mammals. Emotions are a matter of interpretation and other animals probably do not interpret such neural signally the way a human does. But this gets much more complicated since cultural influence and personal experience can affect the interpretation of the neural signaling as well. So emotional experiences are not the same from person to person, there are differences, yet we all believe or argue that emotional interpretation are universal to all humanity. To understand emotions we need to monitor neural activity on a connection by connection basis.

One method of doing so is using optogenetics. This process is very exotic and surprisingly effective. Optogenetics involves modifying the genetics of an animal where its neurology can not only output the chemical transmitters to function but also will emit light as a neuron fires! With that said one can build interfaces of fiber optic probes into an animals brain and listen to the neural activity. Not only that but the neurons can be affected by light emitted by the probes as well. This will lead to a much more detailed understanding of the neural code of brains and an understanding of emotions.

People drew maps of body locations where they feel basic emotions (top row) and more complex ones (bottom row). Hot colors show regions that people say are stimulated during the emotion. Cool colors indicate deactivated areas.

However, there has been much work in the concept of emotions by psychologists where there are three tiers of emotions. There has also been work done on how humans feel emotions and one such study demonstrated an almost universal body map of how we feel emotions.  With that said can we model emotions?

Plutchik’s wheel of emotions gives us a concept of tiered emotions as emotions have core origins starting with 8 primary emotions that then extend to secondary and tertiary emotions. However, there have been others who argue that Plutchik’s wheel doesn’t capture all human emotions. Parrott, Shaver et al is the model that I decided to use.

Example of an Emotion Wheel that starts with 6 primary emotions

Using the OODM Descriptor model we can actually model emotions! Because of the inheritance ability of OODM the relationships of the tiers of emotions and how they are derived can be described.

The image above shows how emotions can be described with Descriptors. Note that only MicroDescriptors are used and also notice that inheritance is used.

The entire Emotions Wheel is structured into classes that all inherit from a “Base Class Emotion”. The base class emotion contains the common descriptors used for all emotions. MicroDescriptors facial expression, secondary, none (will explain this later), and bodymap ProtoVector SubTypes have attributes whose data are actually vectors.

The base Class Emotion contains the basic three MicroDescriptors for all emotions, as shown in the image above.

The MicroDescriptor “none”, due note that all MicroDescriptors are listed as their SubClass Types in this viewer, is actually the arousal Group ProtoVector as shown in the image above. This group along with emotions where created to model emotions and the arousal state can be set to any of the listed subclass types. Each subclass type has vectors associated. So the state of “none” means no vector state has been set yet.

Once all emotions have been described we can build charts of the data as shown in the image above. The list of all emotions is on the left-hand side. Select an emotion and the charts will describe the hierarchy of the emotion any higher tiers represented by the emotion and if you select one of the higher tiers on the right-hand side below are charts that will describe the chemical signature vectors, Arousal, and Valence vectors and the facial muscles activations associated with the emotion as well the body map of where humans feel the emotion. You’ll also notice sliders on the lower left-hand side of the panel where the vectors can be adjusted.

OODM proved to be adequate in modeling or describing emotions so they are more than a word or state but a set of concepts that give the emotion meaning. The need to interpret stimuli to an emotion would be handled by a separate algorithm which could very well be a neural network!