Predicting vs Reacting to an environment

When I think of this issue and those that are in either camp of how an A.I. should work it brings back a childhood memory. I was around 11 years old and my younger brother bought a pet snake, I don’t remember the exact type of snake. My brother was told that he should feed live mice to the snake and so he bought a bag of live mice to feed the snake. We watched in morbid fascination the feasting of the mice by the snake. On one of these feedings something fascinating happened. A poor mouse was thrown into the snake’s aquarium as usual and the mouse quickly took notice of the snake and stood up, trembling with fear. The snake stared at the mouse and the two animals were in this deadlock eye contact. The mouse started to wobble as if hypnotized by the snake’s stare. Then in a blink of an eye the snake pounced onto the poor mouse, opening its mouth ready to swallow it. But the poor mouse in milliseconds woke from its hypnotic state and at the last moment jumped out of the way of the on coming snake. You would think this quick move by the mouse would save it, at least from the initial attack by the snake, but the snake instantly wrapped its body around the mouse and squeezed it to death. The poor mouse’s eyes bulged where then it died.

So what happened? The snake assumed the mouse would simply not move or at least not in time to escape its mouth, and that was the usual case, but that proved to be wrong in this instance! The snake then reacted to the new situation and wrapped its entire body around the mouse! Here is a prefect example of how prediction is likely wrong in an environment that perpetually changes and reacting to change proves to be the better capability than prediction.

With that said: Artificially Intelligent systems can be wrong in their assumptions as they interact in the environment and must be capable of novel reactions to change at a moments notice. This is what natural selection has learned and why the snake proves to be a very adept animal.

Why AI should have the ability to dream

What are dreams? According to Wikipedia:

The content and purpose of dreams are not fully understood, although they have been a topic of scientific, philosophical and religious interest throughout recorded history. “

And:


Dreams mainly occur in the rapid-eye movement (REM) stage of sleep—when brain activity is high and resembles that of being awake. REM sleep is revealed by continuous movements of the eyes during sleep. At times, dreams may occur during other stages of sleep. However, these dreams tend to be much less vivid or memorable.

Brain MRI scans of mice during rem sleep reveal some interesting aspects about what dreaming really is. Where scientist see 3D grid maps of past spacial experiences of the mice. Now you may ask how do they know that it was an experience the mouse lived? Well the 3D spacial grids actually show neurons firing in patterns that resemble the mazes the mice had walk through earlier! So it would appear, at least for mice, dreaming is actually reliving past experiences. So what is the benefit of reliving past experiences?

If you recall the description of the snake and mouse in the “Predicting vs Reacting” post where the snake shifted its mode of attack instantly by reacting to the change in the mouses behavior form other mice. Mammals have more sophisticated brains than snakes and it would appear that even mice can emulate a virtual reality of sorts to learn new adaptations or reactions to their environment. By re-living events some animals can learn new novel adaptations to their environment.

Human brains also have those kinds of 3D spacial maps like the mice. So our dreaming brings about a virtual reality that can experiment with ideas and past experiences. This is where human dreaming is different to animals like mice. Humans use abstract ideas where such notions while never experienced can prompt a virtual experience in our imaginations or dreams. This explains why not all dreams in human beings are re-lived experiences but actual novel concoctions of worlds or scenarios not even possible in the real world! So what is the advantage of dreaming in humans?

One could argue that it is very advantageous to have the ability to work out scenarios not experienced. It allows for ideas to be explored in a way that feels real and therefore solicits the kind of reaction or prompting of resources of the brain to cope with the imagined just as if it were real. In other words dreams allow us to gain experiences with issues we haven’t literally lived but we could apply to our real lives!

So too could an A.I. benefit from an means to reenact past and imagined experiences and learn in virtual environments just as they can learn from real experiences.

Mimicking Arousal

What is arousal? According to the APA dictionary of psychology:

1. a state of physiological activation or cortical responsiveness, associated with sensory stimulation and activation of fibers from the reticular activating system.

2. a state of excitement or energy expenditure linked to an emotion. Usually, arousal is closely related to a person’s appraisal of the significance of an event or to the physical intensity of a stimulus. Arousal can either facilitate or debilitate performance. See also catastrophe theory—arouse vb.

The key component for arousal is the reticular activating system (RAS). This is responsible for alertness and focus in mammals. Here is another feature of brain activity that is responsible for real-time adaptations in the environment. But for a machine that can be relatable to people RAS is also critical. Imagine how much more empathy or anthropomorphic a machine becomes when it conveys something that all humans experience, feeling sleepy, tired and/or feeling very active with energy!

To Mimic RAS involves signalling or processing that captures things such as battery levels, time of day, feelings of exhaustion. These signals have to be integrated into the information processing of the machine in such a way that it affects its choices and interpretations of information both externally and its internal states.

The consequences of an Emotional Artificial Intelligence

The most shocking truth of human reality is that we are a form of biology and as such are driven by the physics that makes the chemistry happen. What can and does make us unpredictable in certain ways is how such chemistry can be altered. We’re talking about subtle influences such as thermal currents in a brain cell! When realizing that qualia of experiences relates to the emotional reactions, we see how important this feature of our brains is. To give a machine something similar as to how it would make decisions based on the emotional reaction it anticipates or has experienced might give some pause to create such a machine. After all who wants a car that doesn’t feel like driving you to work on a particular morning?

So what’s the point to building an emotional machine? The notion goes towards the objective of our goal and that is to build a machine that can relate to human beings. To relate to humans the machine should have emotions or at least mimic the signal patterns that emotions respond to as we interact in the environment. Currently those software tools or applications that try to recognize human facial expressions and associate them to words that identify or describe emotions can not relate to humans! They are no different than you PC where you type on your keyboard and it responds according to its programming with a specific response. Some think that’s all machines need to do and that humans will then anthropomorphize how the machine responds. But such strategies quickly fall into the uncanny valley as the response become very repetitive and many times incoherent.

Ultimately emotional machines will be much more relatable to people and perhaps to a degree that’s not comfortable, a flip of the uncanny valley if you will, and because its so human like it causes an adverse reaction. On the other hand they could be integrated into family or be guardians of the elderly where provide emotional support similarly to pets. In another context because most people live in cities, at least in first world countries, human intimacy is problematic. Just look at the dating sites where it is widely known that most use chat bots and employees to respond to lonely men. An emotional A.I. just might be the god send to alleviate anxiety and depression from loneliness…